

International Multidisciplinary Research Journal

Golden Research Thoughts

Chief Editor
Dr.Tukaram Narayan Shinde

Publisher
Mrs.Laxmi Ashok Yakkaldevi

Associate Editor
Dr.Rajani Dalvi

Honorary
Mr.Ashok Yakkaldevi

Welcome to GRT

RNI MAHMUL/2011/38595

ISSN No.2231-5063

Golden Research Thoughts Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial board. Readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

Flávio de São Pedro Filho
Federal University of Rondonia, Brazil

Mohammad Hailat
Dept. of Mathematical Sciences,
University of South Carolina Aiken

Hasan Baktir
English Language and Literature
Department, Kayseri

Kamani Perera
Regional Center For Strategic Studies, Sri
Lanka

Abdullah Sabbagh
Engineering Studies, Sydney

Ghayoor Abbas Chotana
Dept of Chemistry, Lahore University of
Management Sciences[PK]

Janaki Sinnasamy
Librarian, University of Malaya

Ecaterina Patrascu
Spiru Haret University, Bucharest

Anna Maria Constantinovici
AL. I. Cuza University, Romania

Romona Mihaila
Spiru Haret University, Romania

Loredana Bosca
Spiru Haret University, Romania

Ilie Pintea,
Spiru Haret University, Romania

Delia Serbescu
Spiru Haret University, Bucharest,
Romania

Fabricio Moraes de Almeida
Federal University of Rondonia, Brazil

Xiaohua Yang
PhD, USA

Anurag Misra
DBS College, Kanpur

George - Calin SERITAN
Faculty of Philosophy and Socio-Political
Sciences Al. I. Cuza University, Iasi

.....More

Titus PopPhD, Partium Christian
University, Oradea, Romania

Editorial Board

Pratap Vyamktrao Naikwade
ASP College Devruk, Ratnagiri, MS India
Ex - VC. Solapur University, Solapur

Rajendra Shendge
Director, B.C.U.D. Solapur University,
Solapur

R. R. Patil
Head Geology Department Solapur
University, Solapur

N.S. Dhaygude
Ex. Prin. Dayanand College, Solapur

R. R. Yalikar
Director Management Institute, Solapur

Rama Bhosale
Prin. and Jt. Director Higher Education,
Panvel

Narendra Kadu
Jt. Director Higher Education, Pune

Umesh Rajderkar
Head Humanities & Social Science
YCMOU, Nashik

Salve R. N.
Department of Sociology, Shivaji
University, Kolhapur

K. M. Bhandarkar
Praful Patel College of Education, Gondia

S. R. Pandya
Head Education Dept. Mumbai University,
Mumbai

Govind P. Shinde
Bharati Vidyapeeth School of Distance
Education Center, Navi Mumbai

G. P. Patankar
S. D. M. Degree College, Honavar, Karnataka

Alka Darshan Shrivastava
Shaskiya Snatkottar Mahavidyalaya, Dhar

Chakane Sanjay Dnyaneshwar
Arts, Science & Commerce College,
Indapur, Pune

Maj. S. Bakhtiar Choudhary
Director, Hyderabad AP India.

Rahul Shriram Sudke
Devi Ahilya Vishwavidyalaya, Indore

Awadhesh Kumar Shirotriya
Secretary, Play India Play, Meerut (U.P.)

S. Parvathi Devi
Ph.D.-University of Allahabad

S. KANNAN
Annamalai University, TN

**MECHANICAL CHARACTERIZATION OF AL 6063/B₄C
PARTICULATE COMPOSITES**

Paramesha H P

PDM (M.Tech), Dept. of IEM, Sri Siddhartha Institute of Technology
Tumkuru, India.

Short Profile

Paramesha H P is a Department of IEM at Sri Siddhartha Institute of Technology, Tumkuru, India. He Has Completed B.E. and M.TECH.

Co - Author Details :

D. Parameshwaramurthy

Asst. Professor, Dept. of IEM , Sri Siddhartha Institute of Technology , Tumkuru, India.

ABSTRACT:

In the present work, the mechanical characterization of Al6063/B₄C particulate composites to be discussed. The Metal matrix composites are higher specific strength, good wear resistance, good surface finish, high corrosion resistance than ceramic materials. The Al6063/B₄C particulate composites to be manufactured by using stir casting technique. It is one of the most economical method of producing the composites.

The mechanical characteristics of Aluminium-Boron Carbide Al6063-B₄C particulate composites using a stir casting method is discussed. The non heat treated Al6063 with varying percentage of B₄C (2-6%) were fabricated and conducted the mechanical tests. The finally mechanical characteristics of Al-B₄C was discussed.

KEYWORDS

Al-B₄C, Stir casting method,

Article Indexed in :

DOAJ
BASE

Google Scholar
EBSCO

DRJI
Open J-Gate

INTRODUCTION

Composite materials are a result of the continuous attempts to develop new engineering materials with low weight to strength ratios and improved properties. Among modern composites materials, particulate reinforced metal matrix composites (MMCs) are finding increased applications due to their favorable mechanical properties such as improved strength, stiffness and increased wear resistance over unreinforced alloys. In particular, composites show enhanced properties compared to unreinforced alloys. Aluminium metal matrix reinforced with Boron Carbide (B₄C) is a novel composite, which is used in automotive industries (ex. brake pads and brake rotor) due to high wear resistance, high strength to weight ratio, elevated temperature toughness and high stiffness.

Metal matrix composite (MMC) is a material which consists of metal alloys reinforced with continuous, discontinuous fibers, whiskers or particulates, the end properties of which are intermediate between the alloy and reinforcement. Aluminium metal matrix composites have become the necessary materials in various engineering applications like aerospace, marine and automobile products applications such as engine piston, cylinder liner, brake disc/drum etc. and also material is used for architectural applications, shop fittings, irrigation tubing, window frames, extrusions and doors. [1]

The work is made to develop the composite involving aluminium matrix reinforced with particulates of Boron carbide (produced by stir casting technique), the cast composites were tested for hardness tensile and impact properties.

2. EXPERIMENTAL MATERIAL

In this present work Al 6063 is used as matrix material, Table 1 and Table 2 shows Properties of Al6063 and Chemical Composition of Al 6063. Boron carbide with particle size 90 μ m was used as reinforcement material. The properties of Boron carbide are shown in Table 3.

Table 1.Properties of Al6063

Density	2.7 g/cc
Hardness, Brinell	73
Ultimate Tensile Strength	241 Mpa
Tensile Yield Strength	214 MPa
Elongation at Break	12 %
Modulus of Elasticity	68.9 GPa
Fatigue Strength	68.9 MPa
Machinability	50 %

Table2.Chemical Composition of Al 6063I

Magnesium (Mg)	0.45 - 0.90
Silicon (Si)	0.20 - 0.60
Iron (Fe)	0.0 - 0.35
Others (Total)	0.0 - 0.15
Chromium (Cr)	0.0 - 0.10
Copper (Cu)	0.0 - 0.10
Titanium (Ti)	0.0 - 0.10
Manganese (Mn)	0.0 - 0.10
Zinc (Zn)	0.0 - 0.10
Other (Each)	0.0 - 0.05
Aluminium (Al)	97.5

Table3.Properties of B₄C

Density	2.51 g/cc
Melting Point	2,450° C
Hardness	3,000Vickers
Compressive Strength	2800Mpa
Young's Modulus	450Gpa
Fracture Toughness	3.0K IC MPam ^{1/2}
Thermal Conductivity	35Wm ⁻¹ K ⁻¹
ThermalShock Resistance	Poor
Temperature of Application (in Air)	500° C Max

3. EXPERIMENTAL PROCEDURE

The details of the experiments carried out on Al6063 alloy subjected to refinement B₄C and with T6 heat treatment has been highlighted under the following.

- Preparation of Composites
- Melting and casting

3.1 Preparation of Composites

3.1.1 Matrix Material. The base matrix chosen in the work is the aluminium 6063. Alloy 6063 is an aluminum alloy containing copper, magnesium, manganese and some minor alloying elements. They have high strength to weight ratio, good formability, age harden ability and other appropriate properties.

3.1.2 Reinforcement Material. Boron carbide is taken as reinforcement material and its alloys. It Posses many of the mechanical and physical properties required of an effective reinforcement, in particular high stiffness properties and high hardness properties.

3.1.3 Melting and casting

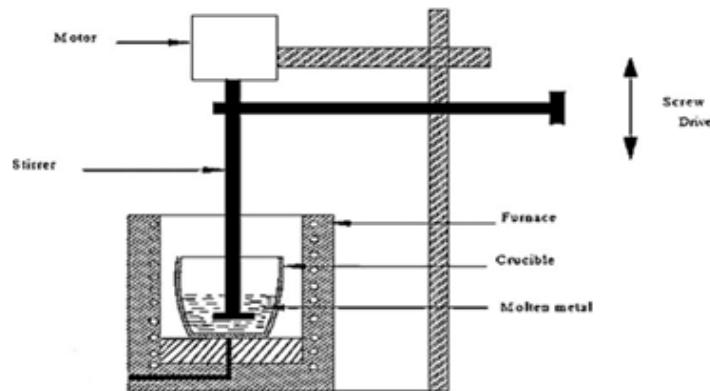


Fig1. Stir Casting Technique

- 1) Production of the metal matrix composite (MMC) through stir casting technique.
- 2) The Al6063 alloy melts at a temperature of 656°C in a graphite crucible in melting furnace and degassing was carried out using degassing tablets.
- 3) The stirring device was a stainless steel rod, which was equipped with four stirring blades; the blades were mounted radial on the rotating rod and it will shows in Fig 1.
- 4) The addition of B₄C will be added on the percentage weight of the aluminium alloy.
- 5) The mixture starts from 2% by weight and will go on up to 6% by weight, with the increment of 2% per trial.
- 6) The molten alloy was stirred at 350 rpm for up to 1 min until a vortex is formed. Preheated B₄C particles at 2000°C was added into the formed vortex slowly and steadily while continuing stirring for 3-5 min.
- 7) The molten metal will be poured into preheated mould die.

4. EXPERIMENTAL DETAILS

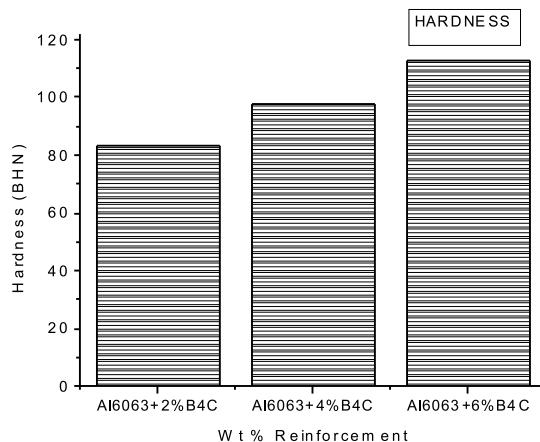
4.1 Hardness Test

Hardness is the property of a material that enables it to resist plastic deformation, usually by penetration. However, the term hardness may also refer to resistance to bending, scratching, abrasion or cutting. According to IS: 1500 – pt 1:2013 standard

The BHN is calculated according to the formula given below in eq-1

$$BHN = \frac{2P}{\pi D(D - \sqrt{D^2 - d^2})} \quad (1)$$

Where,


P (Load Applied)

D (Dia of Ball Indenter)

d (Dia of Indentation)

From hardness data in Fig 2 it can clearly be seen that, with the exception of the ductility, the

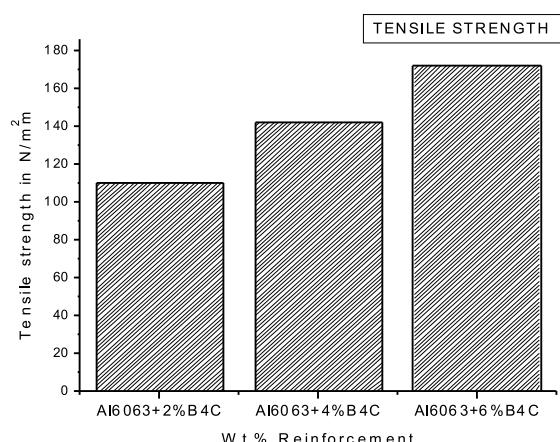

addition of B₄C particles improves the mechanical properties of the resulting composite. It is shown the hardness of Al reinforced with 2-6% percentage level of B₄C. The results show that increasing the percentage level of B₄C with Al, hardness of the composite also increased.

Fig.2: Hardness of Al in 2-6% of B₄C

4.2. Tensile test

The tensile specimens were prepared as per ASTM E8M-13a standard. The dimensions of the specimen are shown in Fig 3. The ultimate tensile strength was estimated using computerized uni-axial tensile testing machine. The tensile strength of AMCs was found to be maximum for 6% (167.81MPa).

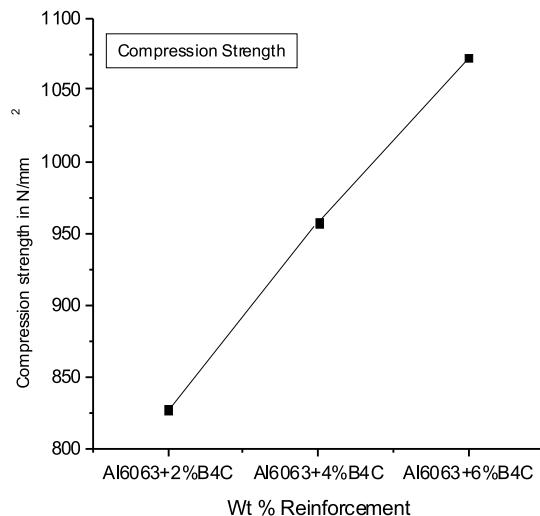
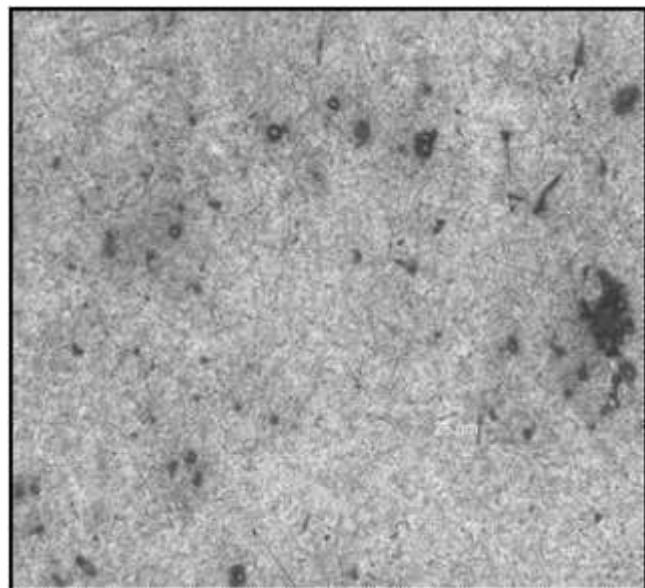


Fig 3.The Effect of Amount of B₄C Particulates on the Peak Stress of Stir Cast AMCs

4.3 Compressive Strength

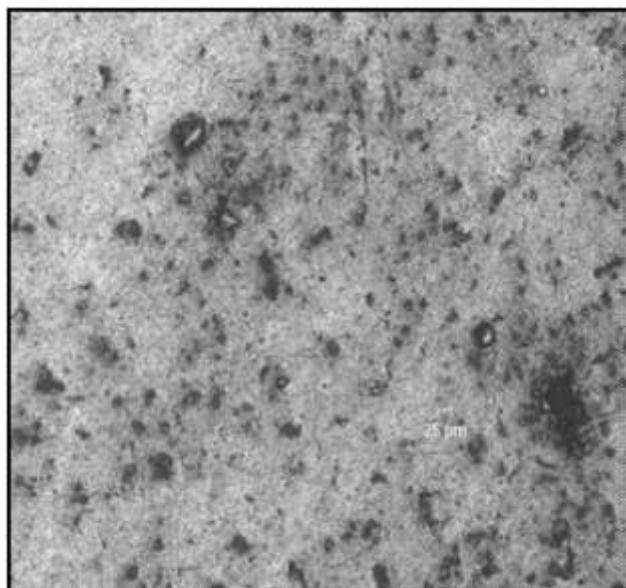
According To ASTM E9 standard the test was carried out. The Fig 4 shows the effect of B₄C

content on the compressive strength of cast Al6063- B₄C composites. The Boron carbide content increases 2-6%, the compressive strength of the composite material increases some amounts.

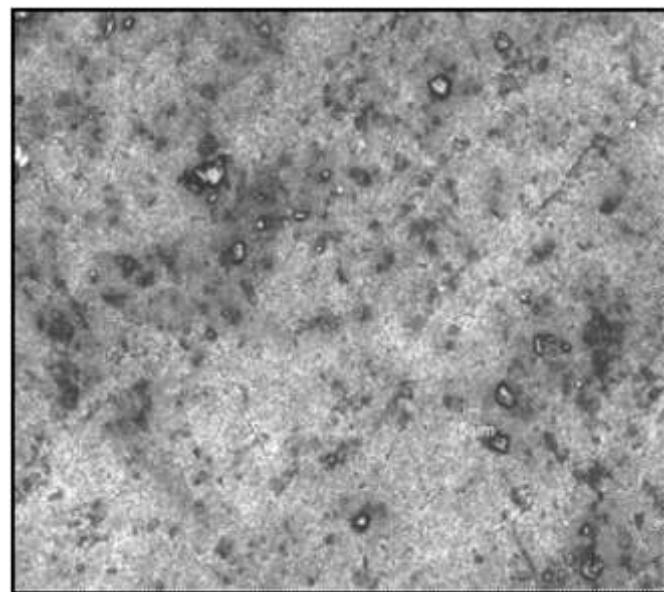

Fig 4 Effect of the B₄C content on compression strength

4.4. Microstructure

Fig 5(a) to 5(f) shows Microstructure of Al6063+2% to 6% Boron carbide in a step of 2, where Microstructure consists of fine grains of aluminium solid solution with fairly distribution of B₄C reinforcement particles throughout images.

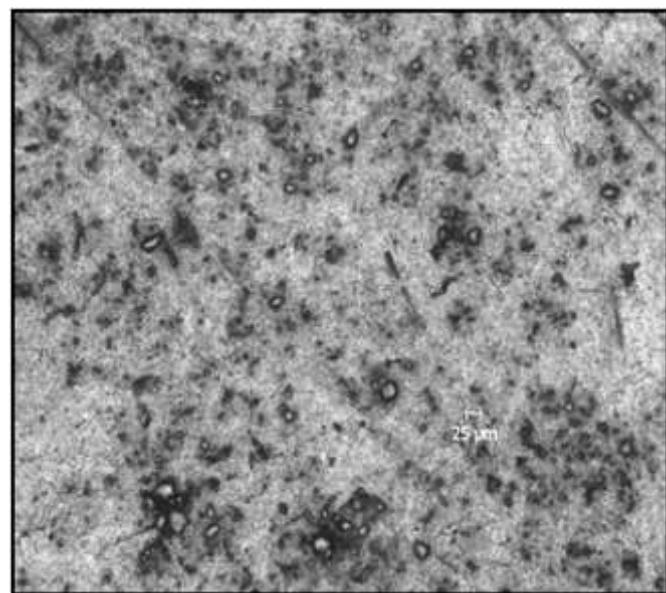


(a)

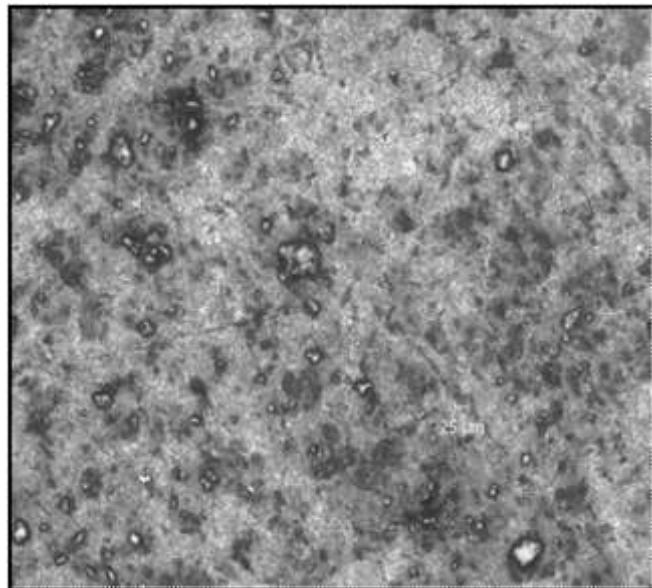


(b)

Fig 5(a) and 5(b): Microstructure of Al6063+2% B₄C Microstructure



(c)



(d)

Fig 5(c) and 5(d): Microstructure of Al6063+4% B₄C Microstructure

(e)

(f)

Fig 5(e) and 5(f): Microstructure of Al6063+6% B₄C Microstructure

5. CONCLUSIONS

The non heat treated on Al- B₄C (2-6%) which shows results

- The hardness of the material is increased as reinforcement added with Aluminium.
- The tensile strength of the material is increases as reinforcement added with Aluminium
- The compression strength of the material is increased as reinforcement added with Aluminium
- Microstructure consists of fine grains of aluminium solid solution.

6. REFERENCES

- [1] K. Rajkumar, J. Maria Antony Charles, "Mechanical & Machining Characteristics of Al/B4C Metal Matrix Composites". SSN College of Engineering, Kalavakkam, Proceedings of the "National Conference on Emerging Trends In Mechanical Engineering"
- [2] Gopi K.R, Mohandas K.N, Reddappa H.N, M.R. Ramesh, "Characterization of As Cast and Heat Treated Aluminium 6061/Zircon sand/Graphite Particulate Hybrid Composites". International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249–8958, Volume-2, Issue-5, June 2013
- [3] Saikiruthi.S.P, Vijayaramnath.B, Elanchezhian.C, "Experimental Evaluation of The Mechanical Properties Of Aluminium 6061-B4C-SiC Composite". International Journal of Engineering ResearchVolume No.3 Issue No: Special 1, pp: 70-73, 22nd March 2014
- [4] Gopal Krishna U.B Sreenivas Rao K.V, and Vasudeva B, "Effect Of Percentage Reinforcement Of B4C On The Tensile Property Of Aluminium Matrix Composites". Int. J. Mech. Eng. & Rob. Res. 2012, ISSN 2278–0149 www.ijmerr.com, Vol. 1, No. 3, October 2012

MECHANICAL CHARACTERIZATION OF AL 6063/B₄C PARTICULATE COMPOSITES

[5]. Siddesh Kumar N G, V M Ravindranath,G S Shiva Shankar ,Mechanical and wear behaviour of aluminium metal matrix hybrid composites,SciVerse Science Direct,Procedia Materials Science5(2014)908–917.

[6].V.C.Uvaraja,N.Natarajan,Comparision on Al6061 and Al7075 alloy with Sic and B4C reinforcement hybrid metal matrix composites,IJART, IJART, Vol.2 Issue 2, 2012, 1- 12, ISSN NO: 6602 3127.

Article Indexed in :

DOAJ
BASE

Google Scholar
EBSCO

DRJI
Open J-Gate

Publish Research Article

International Level Multidisciplinary Research Journal For All Subjects

Dear Sir/Mam,

We invite unpublished Research Paper,Summary of Research Project, Theses, Books and Book Review for publication, you will be pleased to know that our journals are

Associated and Indexed, India

- ★ International Scientific Journal Consortium
- ★ OPEN J-GATE

Associated and Indexed, USA

- EBSCO
- Index Copernicus
- Publication Index
- Academic Journal Database
- Contemporary Research Index
- Academic Paper Database
- Digital Journals Database
- Current Index to Scholarly Journals
- Elite Scientific Journal Archive
- Directory Of Academic Resources
- Scholar Journal Index
- Recent Science Index
- Scientific Resources Database
- Directory Of Research Journal Indexing

Golden Research Thoughts
258/34 Raviwar Peth Solapur-413005, Maharashtra
Contact-9595359435
E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com
Website : www.aygrt.isrj.in