

International Multidisciplinary Research Journal

Golden Research

Thoughts

Chief Editor
Dr.Tukaram Narayan Shinde

Publisher
Mrs.Laxmi Ashok Yakkaldevi

Associate Editor
Dr.Rajani Dalvi

Honorary
Mr.Ashok Yakkaldevi

Welcome to GRT

RNI MAHMUL/2011/38595

ISSN No.2231-5063

Golden Research Thoughts Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial board. Readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

Flávio de São Pedro Filho
Federal University of Rondonia, Brazil

Mohammad Hailat
Dept. of Mathematical Sciences,
University of South Carolina Aiken

Hasan Baktir
English Language and Literature
Department, Kayseri

Kamani Perera
Regional Center For Strategic Studies, Sri
Lanka

Abdullah Sabbagh
Engineering Studies, Sydney

Ghayoor Abbas Chotana
Dept of Chemistry, Lahore University of
Management Sciences[PK]

Janaki Sinnasamy
Librarian, University of Malaya

Ecaterina Patrascu
Spiru Haret University, Bucharest

Anna Maria Constantinovici
AL. I. Cuza University, Romania

Romona Mihaila
Spiru Haret University, Romania

Loredana Bosca
Spiru Haret University, Romania

Ilie Pintea,
Spiru Haret University, Romania

Delia Serbescu
Spiru Haret University, Bucharest,
Romania

Fabricio Moraes de Almeida
Federal University of Rondonia, Brazil

Xiaohua Yang
PhD, USA

Anurag Misra
DBS College, Kanpur

George - Calin SERITAN
Faculty of Philosophy and Socio-Political
Sciences Al. I. Cuza University, Iasi

.....More

Titus PopPhD, Partium Christian
University, Oradea, Romania

Editorial Board

Pratap Vyamktrao Naikwade
ASP College Devruk, Ratnagiri, MS India Ex - VC. Solapur University, Solapur

Rajendra Shendge
Director, B.C.U.D. Solapur University,
Solapur

R. R. Patil
Head Geology Department Solapur
University, Solapur

N.S. Dhaygude
Ex. Prin. Dayanand College, Solapur

R. R. Yalikar
Director Management Institute, Solapur

Rama Bhosale
Prin. and Jt. Director Higher Education,
Panvel

Narendra Kadu
Jt. Director Higher Education, Pune

Umesh Rajderkar
Head Humanities & Social Science
YCMOU, Nashik

Salve R. N.
Department of Sociology, Shivaji
University, Kolhapur

K. M. Bhandarkar
Praful Patel College of Education, Gondia

S. R. Pandya
Head Education Dept. Mumbai University,
Mumbai

Govind P. Shinde
Bharati Vidyapeeth School of Distance
Education Center, Navi Mumbai

G. P. Patankar
S. D. M. Degree College, Honavar, Karnataka

Alka Darshan Shrivastava
Shaskiya Snatkottar Mahavidyalaya, Dhar

Chakane Sanjay Dnyaneshwar
Arts, Science & Commerce College,
Indapur, Pune

Maj. S. Bakhtiar Choudhary
Director, Hyderabad AP India.

Rahul Shriram Sudke
Devi Ahilya Vishwavidyalaya, Indore

Awadhesh Kumar Shirotriya
Secretary, Play India Play, Meerut (U.P.)

S. Parvathi Devi
Ph.D.-University of Allahabad

S. KANNAN
Annamalai University, TN

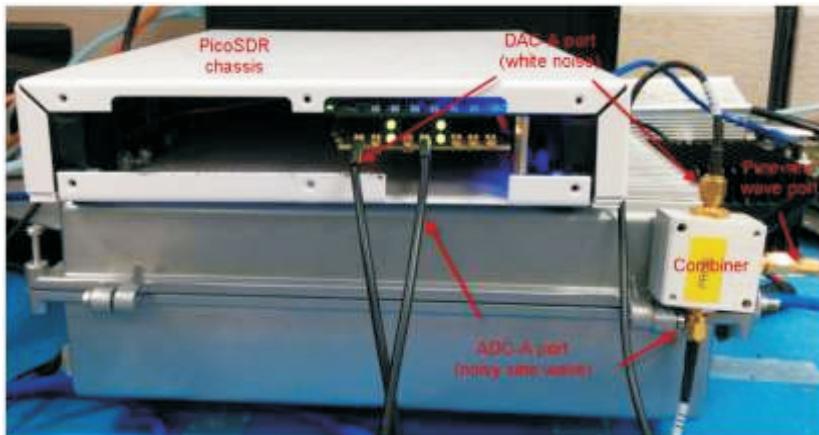
Address:-Ashok Yakkaldevi 258/34, Raviwar Peth, Solapur - 413 005 Maharashtra, India
Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahoo.in Website: www.aygrt.isrj.org

Satish Kumar Kalhotra
Maulana Azad National Urdu University

DESIGN AN ADAPTIVE FILTER USING LMS TO DENOISE ECG SIGNAL ON RECONFIGURABLE PLATFORM

Somnath K. Bagale

Department of Electronics & Telecommunication, Savitribai Phule Pune University, Pune, India (MS).


Short Profile

Somnath K. Bagale is working at Department of Electronics & Telecommunication in Savitribai Phule Pune University, Pune, India (MS). He has completed B.E., M.E. He has done one academic project on "Reconfigurable Platform to Design an Adaptive Filter using LMS for Optimum Performance to Denoise ECG."

Co- Author Details :

Venkat N. Ghodke

Department of Electronics & Telecommunication, Savitribai Phule Pune University, Pune, India (MS).

ABSTRACT:

Signal Processing its importance in biomedical engineering is known to all. ECG analysis and processing can be used to extract some characteristic parameters. The noise removal from Electrocardiogram (ECG) signal is very complex problem. In ECG signal baseline wander noise distorts the low frequency segments. The low frequency segment in ECG is ST segment. Heart attack related information is retrained from ST

segment, so it is very necessary to have a noise free ECG signal. Baseline drift frequencies, drift interference is Adaptive filtering. This Paper presents development and implementation of architecture for a LMS based Adaptive filter using Reconfigurable Devices such as Spartan 3s400pq208-4 board and Xilinx system Generator (XSG) software, to minimize the Baseline wander noise (0.15 to 0.5Hz) from Electrocardiogram (ECG) signal. The ECG signal is taken from the database and external noise signal is added into it. The noisy ECG signal is enhanced by minimizing the baseline drift interference. This research work is carried out by using FPGA for adaptive filter using LMS Algorithm to remove various noises to prevent low frequency component of ECG signal.

KEYWORDS

Adaptive filter, Xilinx system generator (XSG), LMS Algorithm, MIT BIH database, Simulink etc.

Article Indexed in :

DOAJ
BASE

Google Scholar
EBSCO

DRJI
Open J-Gate

1

1. INTRODUCTION :

The function of the human body is based on signals of electrical, chemical or acoustic origin. Such signals provide information which may not be immediately perceived but which is hidden in the structure of the signal. This hidden information has to be decoded in some way before the signals can be given useful interpretations. The baseline wander is an extraneous, low-frequency activity in the ECG which may interfere with the signal analysis, making the clinical interpretation inaccurate. drift is often exercise- induced and may have its origin in a variety of sources, including perspiration, respiration, body movements and poor electrode contact. The spectral content of the baseline drift is usually in the range between 0.05-1Hz but, during strenuous exercise, it may contain higher frequencies. Baseline drift This Paper is based on Adaptive ADAPTIVE in various cancellation, system identification, noise cancellation and channel equalization etc. [1]. and satisfactory in availability weights according pipeline implementation. The delayed LMS correction termsiteration are calculated from the error corresponding to a past iteration.

In this Paper, the ECG signal is taken from the database and external noise signal is added into it. The noisy ECG signal is enhanced by minimizing the baseline drift interference. This interference reduction is takes place by designing the digital filter on FPGA platform. Various filters are designed and simulated with cut-off frequency of 0.5Hz. The best suited filter technique is chosen for FPGA implementation which gives a lesser order of filter, lesser power consumption and improved SNR.

2. PROPOSED SYSTEM

2.1 Noises in ECG

A] Power line interferences

Power line interferences contains 60 Hz pickup (in U.S.) or 50 Hz pickup (in India) because of improper grounding [10]. It is indicated as an impulse or spike at 60 Hz/50 Hz harmonics, and will appear as additional spikes at integral multiples of the fundamental frequency. Its frequency content is 60 Hz/50 Hz and its harmonics, amplitude is up to 50 percent of peak-to-peak ECG signal amplitude [8]. A 60 Hz notch filter can be used remove the power line interferences [7].

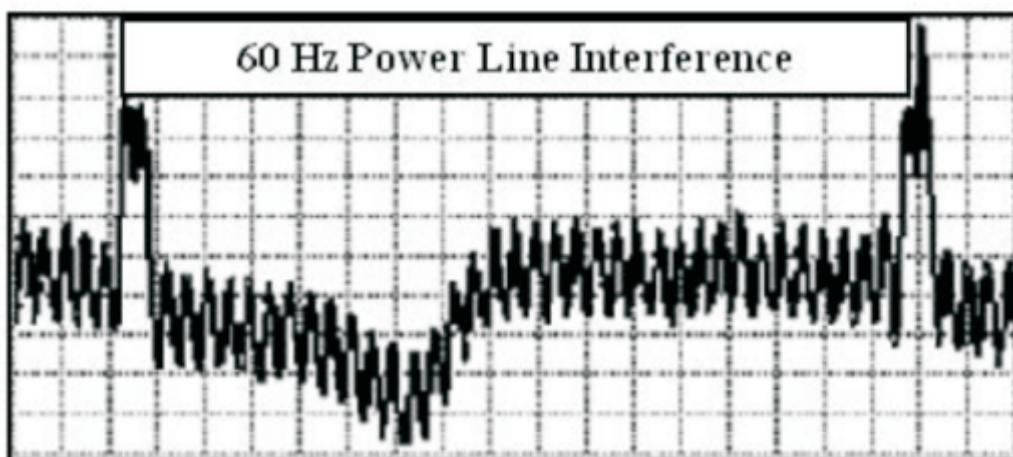
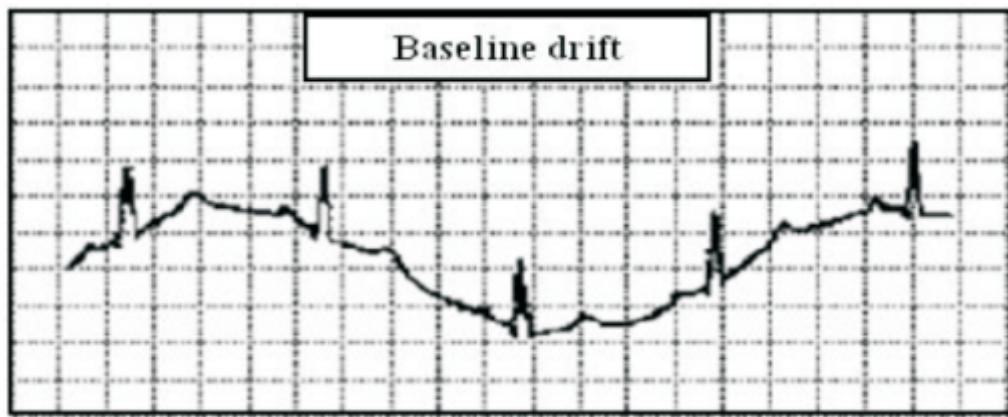



Figure 1: 60 Hz Power line interference.

B] Baseline drift

Base-line drift may be caused in chest-lead ECG signals by coughing or breathing with large movement of the chest, or when an arm or leg is moved in the case of limb-lead ECG acquisition [6]. Base-line drift can sometimes be caused by variations in temperature and bias in the instrumentation and amplifiers. Its frequency range generally falls below 0.5 Hz.

Figure 2 : Baseline drifts in ECG signal.

2.2 ECG Dataset:-

Massachusetts Institute of Technology / Beth Israel Hospital (MIT/BIH) database is a rich database of several hundred ECG recordings, extending over 200 hours [Moody, 1992]. Each recording contains one to three signals and ranges from 20 seconds to 24 hours in duration. Most of the signals have been annotated on beat-to-beat basis. The MIT-BIH Arrhythmia database contains 48 ECG signals that were recorded between 1975 and 1979 at the Beth Israel Hospital Arrhythmia Laboratory. The recordings were digitized at 360 samples per second per channel with 11-bit resolution over a 10 mV range. Each record was independently annotated by two or more cardiologists; disagreements were resolved to obtain the computer-readable reference annotations for each beat (approximately 110,000 annotations in all) included with the database. This directory contains the entire MIT-BIH Arrhythmia Database. About half (25 of 48 complete records, and reference annotation files for all 48 records) of this database has been freely available here since PhysioNet's inception in September 1999 [9].

2.3 Xilinx System Generator Tool:-

System Generator is a DSP design tool from Xilinx that enables the use of the Math Works model based design environment Simulink for FPGA design. Designs are captured in the DSP friendly Simulink modeling environment using a Xilinx specific blockset. Xilinx Simulink blockset is a highly parameterized library that includes DSP functions and algorithms. Over 90 DSP building blocks are provided in the Xilinx DSP blockset for Simulink. These blocks include the common DSP building blocks such as adders, multipliers, and registers. Also included are a set of complex DSP building blocks such as FFTs, filters, and memories.

Figure 3 shows a snapshot of a Simulink DSP design that instantiates DSP blocks. The software automatically converts the high level system DSP block diagram to RTL. The result can be synthesized to Xilinx FPGA technology using ISE tools. All of the downstream FPGA implementation steps including synthesis and place and route are automatically performed to generate an FPGA programming file.

System Generator provides a system integration platform for the design of DSP on FPGAs that allows the RTL, Simulink, MATLAB, and C/C++ components of a DSP system to come together in a single simulation and implementation environment. System Generator supports a black box block that allows RTL to be imported into Simulink.

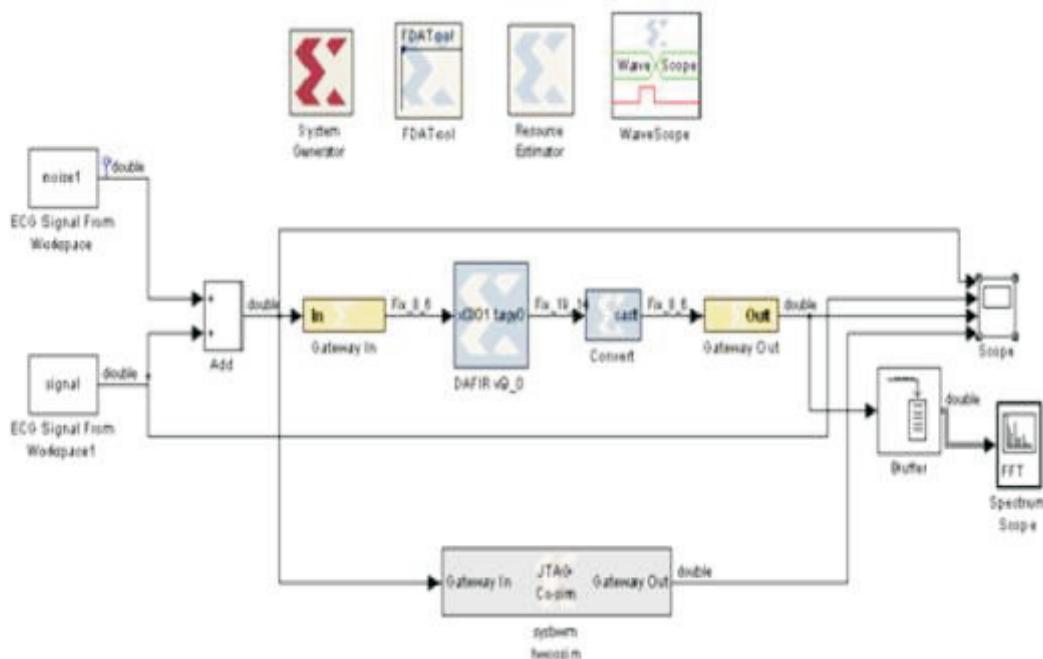


Figure 3. Snapshot of a Simulink DSP design.

DSP building blocks are provided in the Xilinx DSP blockset for Simulink. These blocks include the common DSP building blocks such as adders, multipliers, and registers. Also included are a set of complex DSP building blocks such as forward error correction blocks, FFTs, filters and memories.

3. IMPLEMENTATION

A major element of the foundation stage is the extraction of ECG signals from the standard database i.e. (MIT/BIH) database. After extraction, the signals are subject to processing using several tools available by the MATLAB software for simulation purpose. For ECG de-noising the digital FIR filter is designed with various available filter design techniques. Output of this various designs are simulated and analyzed with the help of performance parameters like SNR. After comparing the different techniques of filter design, select the best technique for implementation of filter on FPGA platform and verify the results. These steps are illustrated in design flow shown in figure 4. below:

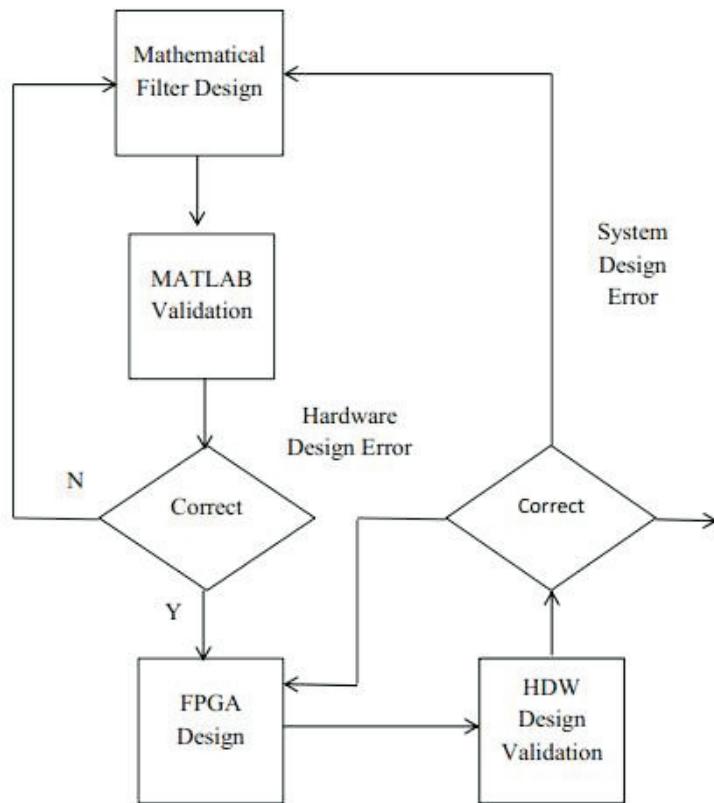


Figure 4.: Experimental Design Flow

Xilinx System Generator is a MATLAB-Simulink based design tool for Xilinx's line of FPGAs. The synthesis of these modules creates netlist files which serve as the input to the implementation module. After generating these files, the logic design is converted into a physical file that can be downloaded on the target device. The performance of the design adaptive filters will be checked by Designing Simulink model [1] or writing code for adaptive filter using appropriate software. The analysis of these signals will give the optimum solution for the noise removal from the ECG.

Fig.5 shows the Adaptive Filter implementation using Xilinx system generator tool. IN and OUT block decides the boundary of hardware. Clean ECG is taken from MIT_BIH which is added with Baseline wander noise. Simulation was done on SIMULINK available with MATLAB (2013b). Fig.5 shows Adaptive filtering using Xilinx system generator tool.

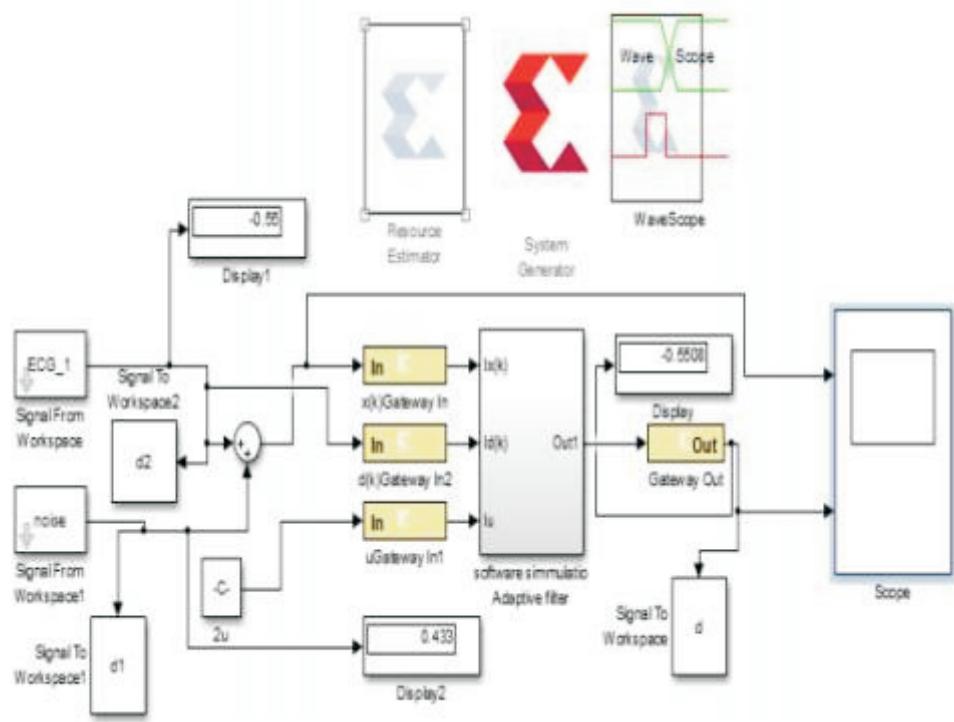


Fig.5.: Adaptive Filter implementation using Xilinx system generator tool.

Adaptive Filter implementation using Spartan-3s400pq208-4 board and Xilinx system generator tool is shown in fig.6.

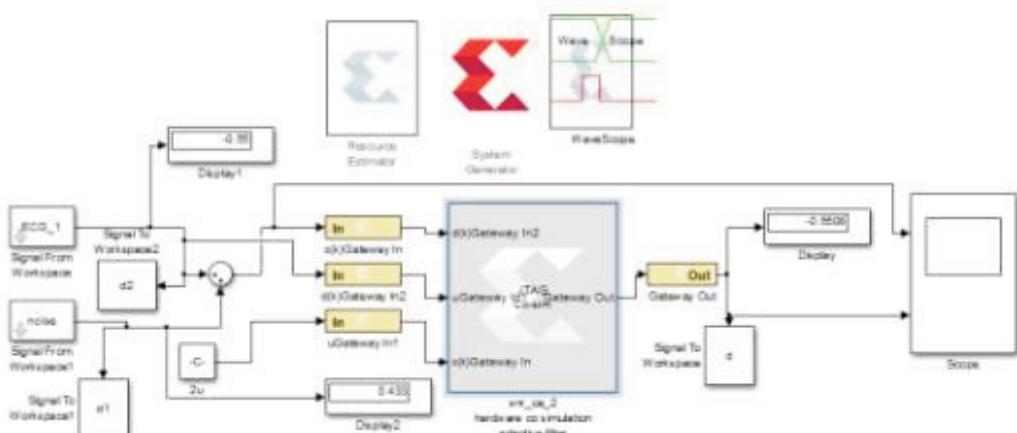


Fig 6: Adaptive Filter implementation using Spartan-3s400pq208-4 board and Xilinx system generator tool

4. CONCLUSION AND FUTURE SCOPE

The simulation and implementation results are presented for Adaptive filter design to denoise the baseline drift interference from ECG signal. There are various artifacts that contaminate electrocardiogram (ECG) recording; the most common are power line interference and baseline drift. The baseline drift in ECG signal is caused due to body movement, respiration or poor electrode contacts etc. The Adaptive filter has been designed to denoise the noisy ECG signal. The proper order of Adaptive filter is chosen on the basis of output SNR. As DSP have some disadvantages like flexibility, cost and performance over FPGA. FPGA is chosen for implementation of final design and also adaptive filter design gets less complexity and because of Xilinx system generator it is easy to implement.

Therefore, first order Adaptive filter is producing same SNR as it producing to higher order. In order to measure the performance of de-noising, SNR of processed ECG is calculated and MSE was determined to find the degree of mismatch between noisy ECG and filtered.

The designed Adaptive filter works excellent in removing noise from ECG signal. Fig. 7 shows results of Adaptive filter implemented on Xilinx system generator. Within fig.7 above graph show input signal which is mixed with Baseline wander noise and below graph shows filtered ECG signal.

Fig.7.: Adaptive filter result implemented on software simulation

Similar results obtained on hardware using Spartan-3s400pq208-4 board, which are shown in fig.8.

Fig.8: Adaptive filter result implemented on hardware co-simulation using Spartan-3s400pq208-4 board.

5. REFERENCES

- [1] Sande Seema Bhogeshwar, M.K.Soni, Dipali Bansal, "Design of Simulink Model to denoise ECG signal using various IIR & FIR filters", IEEE International Conference on Reliability, Optimization and Information Technology - ICROIT 2014, India, Feb 6-8 2014, pp. 477-483.
- [2] M.zivanovic and M.Gonzalez-Izal, "Simultaneous power line interference and baseline wander removal from ECG and EMG signals by sinusoidal modelling." In Medical Engineering & Physics, xxx, pp. I-II, 2013.
- [3] S.B.S.Bagha, "Removal Of 50hz Powerline Interference For Quality Diagnosis Of Ecg Signal", In International Journal of Engineering Science and Technology, vol.5, pp.1149- 1155, May 2013.
- [4] B.Chandrakar,O.P.Yadav and V.K.Chandra, "A Survey Of Noise Removal Techniques For Ecg Signals", In International Journal of Advance research in computer and Communication Engineering vol. 2 , Issue 3 , pp.1354- 1357, March 2013.
- [5] M.Leelakrishna. and ISelvakumar, "FPGA Implementation of High Speed FIR Low Pass Filter for EMG Removal from ECG", In International Journal of Engineering Research & Technology vol. 2 Issue 5, pp.855-863, May 2013.
- [6] P. J. Joshi, Y. P. Patkar, A.B. Pawar, P. B. Patil, U.R.Bagal. And B. D. Mokal , "ECG Denoising Using MATLAB", In International Journal of Scientific & Engineering Research, vol 4, Issue 5,pp.140 1-1405, May-2013.
- [7] A.Sanyal, A.Baral and A.Lahiri, "Application of Framelet Transform in Filtering Baseline Drift from ECG Signals", In Sciverse Science Direct Procedia Technology vol.4 pp. 862 - 866, 2012.
- [8] G. Kadam and P.C.Bhaskar, "Reduction of Power Line Interference In ECG Signal Using Fir Filter", In International Journal Of Computational Engineering Research, Vol. 2, Issue No.2, pp.314-319, 2012.
- [9] N.kumar, I.Ahmad and P.Rai, "Signal Processing of ECG Using Matlab", In International Journal of Scientific and Research Publications, ISSN 2250-3153, vol2, Issue 10, pp.1- 6, October 2012.
- [10] D.V.L.N Sastry,K.S.Gupta ,V M.Krushna and D.S.y'S N. Reddy, "Improved Snr Of Ecg Signal with New Window- Fir Digital Filters", In International Journal of Advanced Research in Electronics and Communication Engineering, vol I, Issue 3, pp.88-85, September 2012.
- [11] M.Z. U.Rahman, R.A. Shaik and D. V .R.K.Reddy, "Efficient sign based normalized adaptive filtering techniques for cancelation of artifacts in ECG signals: Application to wireless biotelemetry", In Elsevier, Signal Processing, vol-91 pp. 225-239, 2011.
- [12] M.Kaur,B.Singh and Seema, "Comparisons of Different Approaches for Removal of Baseline Wander from ECG Signal", In 2nd International Conference and workshop on Emerging Trends in Technology, pp.30-36, 2011.
- [13] M.Chan, "Filtering and Signal-Averaging Algorithms for Raw ECG Signals." In ESE 482 Digital Signal Processing - Washington University in Saint Louis Final Project – December 14, pp.1-16, 2010.

Publish Research Article

International Level Multidisciplinary Research Journal

For All Subjects

Dear Sir/Mam,

We invite unpublished Research Paper,Summary of Research Project, Theses, Books and Book Review for publication, you will be pleased to know that our journals are

Associated and Indexed, India

- ★ International Scientific Journal Consortium
- ★ OPEN J-GATE

Associated and Indexed, USA

- EBSCO
- Index Copernicus
- Publication Index
- Academic Journal Database
- Contemporary Research Index
- Academic Paper Database
- Digital Journals Database
- Current Index to Scholarly Journals
- Elite Scientific Journal Archive
- Directory Of Academic Resources
- Scholar Journal Index
- Recent Science Index
- Scientific Resources Database
- Directory Of Research Journal Indexing

Golden Research Thoughts
258/34 Raviwar Peth Solapur-413005, Maharashtra
Contact-9595359435
E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com
Website : www.aygrt.isrj.org