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Abstract: In this paper, we introduce the concept of almost-continuous mappings. we give
some characterizations of almost-continuous mappings by showing every continuous mapping
is almost-continuous but the converse need not be true. Also we prove every almost-
continuous mapping is weakly-continuous but the converse need not be true. But we prove an
open mapping is almost-continuous if and only if it is weakly-continuous.
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INTRODUCTION

In this paper, we introduce the concept of almost-continuous mappings. we give some characterizations of
almost-continuous mappings by showing every continuous mapping is almost-continuous but the converse need not
be true. Also we prove every almost-continuous mapping is weakly-continuous but the converse need not be true.
But we prove an open mapping is almost-continuous if and only if it is weakly-continuous.

Also we showed that composition of continuous function is almost-continuous is continuous. Also we
discuss the product of almost-continuous and every restriction of an almost-continuous mapping is almost-
continuous.

Definition:

A topology on a set is a collection t of subsets of X having the following

properties:

(a) pand Xareint.

(b) The union of the elements of any sub collection of T isin t.
(c) The intersection of the elements of any finite subcollection of 7 is in 7.

Definition:

Let (X,t ) be a topological space. A subset U of X is an open set of X if U
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belongs to the collection z.
Example:
In the real line R, (a, b), (a,0), (b, 0) are open.
Definition:
Let A be a subset of a topological space. A point x € A is said to be an interior point of A if Alisa
neighbourhood of x. The set of all interior points of A is called the interior of A .
We write A® or Int A for the interior of A. A is open if and only if A = A”.

Lemma:

Let A and B be a subset of X. Then

(1) X’=Xand ¢°=¢.

(2 A° C A

3) (A)' =A

4 AcCcB=>A"CB.

5) (AN By=A"(1BandA° U B° < (A U B)".

Definition:
Let (X,) be a topological space. A subset U of X is said to beclosediftheset X-U is open.
Example:

The subset [a, b] of R is closed.
R-[a b]=(-,0,a) U (b,o0).
But (-, 00, a) and (b,, o) are open.
Therefore, R-[a, b] is open.
Therefore, [a, b] is closed.

Definition:

A mapping f:X—Y is said to be almost-continuous[5] at a point x € X, if for every neighbourhood M of
f(x), there is a neighbourhood N of x such that f(N)c M ™

Theorem:
Every continuous mapping is almost-continuous.
Proof:

Letf: (X, ) — (Y, T*) be a continuous mappings.

Letx € X.

Then f(x) € Y and M is a neighbourhood of f(x) in Y.

Then there exists a neighbourhood N of x such that f (N) < M.
Since fis continuous and M is open, M ~° is also open.
Therefore, f(N) € M =M ™.
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Hencef(N) c M ™.

Hence f is almost-continuous. ]
The converse of the above Theorem need not be true in general as shown

by the following Example.

Example:

Let R be the set of real numbers and
t={0,R} U {U © X: X-Uis countable or all of X}. Let X = {a, b} and

let T = {(I) , {a}, X}. Let f: (R, 1) — (R, ) be defined by

f (x) :{ aif x is rational
b if x is irrational

Then f is continuous at each point of R, but f is not continuous at x € R if x is rational.
Proof:

Letx €Q.

Then f(x) = {a}. Open sets containing a are {a, b} and X.
It is enough to check for {a}.

Let U be a neighbourhood of {a}.

Then U =X,

Now choose any open set V containing X, it must contain both Q and Q°.
f(V)={abjc U™ ={a}™"

Hence f is almost-continuous at Q.

Letx € Q°

Then f(x) = {b}. Open set containing {b} is X.

Let U be a neighbourhood of {b}.

Then U™ =X.

Now choose an open set V containing x.

Therefore, f (V) CcU™.

Therefore, f is almost-continuous at x € Q°.

Hence f is almost-continuous .

Letx € Q.
Then f(x) =aand f(x) € V.
NowaeV = {a}.

Then f* ({a})=Q.

But Q is not open in T*.

Therefore, fis not continuous at x € Q.
Definition:

A mapping f:X—Y is said to be weakly-continuous [5] if for each point x € X and each neighbourhood V
of f(x), there exists a neighbourhood U of x such that f(U) c V.

Theorem:

Every almost-continuous mapping is weakly continuous.
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Proof.
Let f be an almost-continuous mapping.
Claim: f is weakly continuous.

Letx € X.

Then f(x) € Y and M is a neighbourhood of f(x).
Since f is almost-continuous, there exists a neighbourhood N of x such that f (N) < M ™.
But M is a regularly open neighbourhood of f(x).

Therefore, f (N) € M =M ~where M " is a open neighbourhood.

Therefore, f (N)c M ™.

Hence f is weakly-continuous.

The following Example shows that the converse of the above Theorem need not be true.

Example:

Let (R,7) be the space as in above Example . Let X={a, b, ¢} and

let > ={ ¢ ,{a}, {c}{a,c }.X}.
Let f be a mapping of (R, 7) into (X,t*) defined as follows:

f(x)=] a ifxisrational
b ifxisirrational

Then f is a weakly-continuous open mapping which is not almost-continuous
(at any rational point).

Proof:

Letx €Q.

Then f(x) = {a} € Q.

Then f(x) € U where U is a neighbourhood of f(x) and it must contain {a, b}.
Therefore, there exists a neighbourhood V of x such that f (V) = {a, b}.
Thatis, f(V) c U".

Therefore, f is weakly-continuous.

Letx € Q.

Then f(x) = {a}, {a} is an open set.

Then {a}= {a, b}

That is, {a}™" = {a}.

That is, x < U, U must contain Q and Q°.

Therefore, f (U) ={a, b} & {a}" = {a}.

Therefore, f is not almost-continuous.

Definition:
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A mapping f: X — Y is said to be almost-quasi-compact [5] if it is onto and if A is open whenever f * (A)
is regularly-open.

Theorem:

Suppose that f maps X onto Y and g maps Y onto Z. Then if f is almost-continuous and gef is open then g
is almost-open.

Proof:

Suppose that f is almost-continuous and gef is open.

Let S be any regularly-open subset of Y.

Since f is almost-continuous, then f *(S) is an open subset of X.

Now, gef is open.

Therefore, (gof) (f (S)) is also open.

But (gof) (F*(S)) = 9(S).

Therefore, g(S) is open.

Therefore, g is almost-open. [

Theorem:

Suppose that f maps X onto Y and g maps Y onto Z. Then if f is almost-continuous and if gof is closed then
g is almost-closed.
Proof.
Suppose that f is almost-continuous gef is closed.
Claim: g is almost-closed.
Let S be any regularly-closed subset of Y.
Since f is almost-continuous, f *(S) is a closed subset of X.
Now, gof is closed.
Therefore, (geof) (f *(S)) is also closed.
But (gof) (F*(S)) = 9(S).
Therefore, g(S) is closed.
Therefore, g is almost-closed. [

Theorem:

Suppose that f maps X onto Y and g maps Y onto Z. Then if f is almost-continuous and if gof is quasi-
compact then g is almost-quasi-compact.

Proof:

Suppose that f is almost-continuous and gef is quasi-compact.

Let g (S) be a regularly-open subset of Y.

Then, by almost-continuity of f, f (g *(S)) is open

But f (g *(S)) = (g°f) (S).

Since gof is quasi-compact, S must be open.

Therefore, g is almost-quasi-compact. [

CONCLUSION
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In this Paper, we have proved that every continuous mappings is almost-continuous mappings but the

converse need not be true. We have also proved that every weakly-continuous mappings is almost-continuous but
the converse need not true.
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