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Abstract: In this paper, we introduce the concept of almost-continuous mappings. we give 

some characterizations of almost-continuous mappings by showing every continuous mapping 

is almost-continuous but the converse need not be true. Also we prove every almost-
continuous mapping is weakly-continuous but the converse need not be true. But we prove an 

open mapping is almost-continuous if and only if it is weakly-continuous. 
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 INTRODUCTION 

 

In this paper, we introduce the concept of almost-continuous mappings. we give some characterizations of 

almost-continuous mappings by showing every continuous mapping is almost-continuous but the converse need not 
be true. Also we prove every almost-continuous mapping is weakly-continuous but the converse need not be true. 

But we prove an open mapping is almost-continuous if and only if it is weakly-continuous. 

 Also we showed that composition of continuous function is almost-continuous is continuous. Also we 

discuss the product of almost-continuous and every restriction of an almost-continuous mapping is almost-

continuous. 

 

Definition:  

 

 A topology on a set is a collection τ of subsets of X having the following 

 

properties: 

 

 (a)  and X are in  . 

 (b) The union of the elements of any sub collection of   is in  . 

 (c) The intersection of the elements of any finite subcollection of   is in  . 

 

Definition: 

 

 Let (X,τ ) be a topological space. A subset U of X is an open set of X if U 
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belongs to the collection  . 

 

Example:  

 

 In the real line R, (a, b), (a, ), (b, ) are open. 

 

Definition: 

 

 Let A be a subset of a topological space. A point x   A is said to be an interior point of A if A is a 

neighbourhood of x. The set of all interior points of A is called the interior of A .  

 We write A˚ or Int A for the interior of A. A is open if and only if A = A˚. 

 

Lemma:  

 

Let A and B be a subset of X. Then  

 

(1) X˚ = X and  ˚ = . 

(2) A˚   A. 

(3) (A˚)˚ = A. 

(4) A   B   A˚   B˚. 

(5) ( A  B)˚ = A˚  B˚ and A˚  B˚   (A  B)˚. 

 

Definition: 

 

 Let (X, ) be a topological space. A subset U of X is said to beclosediftheset X-U is open. 

 

Example:  

 

The subset [a, b] of R is closed.  

R – [a, b] = (-, , a)  (b, ). 

But (-, , a) and (b,, ) are open. 

Therefore, R-[a, b] is open. 

Therefore, [a, b] is closed. 

 

Definition: 

 

 A mapping f:X→Y is said to be almost-continuous[5] at a point x   X, if for every neighbourhood M of 

f(x), there is a neighbourhood N of x such that f(N)M ˉ˚ 

 

Theorem:  

 

 Every continuous mapping is almost-continuous. 

 

Proof: 
 

Let f : (X,  )   (Y,  *) be a continuous mappings. 

Let x   X. 

Then f(x)   Y and M is a neighbourhood of f(x) in Y. 

Then there exists a neighbourhood N of x such that f (N)   M. 

Since f is continuous and M is open, M ˉ˚ is also open. 

Therefore, f (N)   M = M ˉ˚. 
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Hence f (N)   M ˉ˚. 

Hence f is almost-continuous.    

The converse of the above Theorem need not be true in general as shown 

by the following Example. 

 

Example:  
 

Let R be the set of real numbers and  

τ = { , R}  {U   X: X – U is countable or all of X}. Let X = {a, b} and  

let τ* = { , {a}, X}. Let f: (R, τ) → (R, τ*) be defined by  

 

f (x) =  a if x is rational 

                b if x is irrational 

 

Then f is continuous at each point of R, but f is not continuous at xR if x is rational. 

 

Proof: 

 

Let x Q. 

Then f(x) = {a}. Open sets containing a are {a, b} and X. 

It is enough to check for {a}. 

Let U be a neighbourhood of {a}. 

Then U ˉ˚ = X. 

Now choose any open set V containing x, it must contain both Q and Qc. 

f (V) = {a, b}  U ˉ˚ = {a}ˉ˚. 

Hence f is almost-continuous at Q. 

Let x   Qc. 

Then f(x) = {b}. Open set  containing {b} is X. 

Let U be a neighbourhood of {b}. 

Then U ˉ˚ = X. 

Now choose an open set V containing  x. 

Therefore, f (V) U ˉ˚. 

Therefore, f is almost-continuous at x Qc. 

Hence f is almost-continuous . 

Let x   Q. 

Then f(x) = a and f(x)   V.  

Now aV = {a}. 

Then f -1 ({a}) = Q. 

But Q is not open in τ*. 

Therefore, f is not continuous at x   Q. 

 

Definition:  

 

 A mapping f:X→Y is said to be weakly-continuous [5] if for each point x   X and each neighbourhood V 

of f(x), there exists a neighbourhood U of x  such that f(U)   . 

 

 

 

Theorem: 

 

 Every almost-continuous mapping is weakly continuous. 



on almost-continuous mappings 

________________________________________________________________________________________________________ 

_____________________________________________________________________________________ 
Golden Research Thoughts  |  Volume 4  | Issue  7  |  Jan  2015 

 
4 

 

 

Proof. 

 

 Let f be an almost-continuous mapping.  

 

Claim: f is weakly continuous. 

 
Let x   X. 

Then f(x)   Y and M is a neighbourhood of f(x). 

Since f is almost-continuous, there exists a neighbourhood N of x such that f (N)   M ˉ˚. 

But M is a regularly open neighbourhood of f(x). 

Therefore, f (N)   M ˉ˚ = M ˉ where M ˉ is a open  neighbourhood. 

Therefore, f (N)  M ˉ. 

Hence f is weakly-continuous.    

The following Example shows that the converse of the above Theorem need not be true. 

 

Example:  
 

Let (R, ) be the space as in above Example . Let X={a, b, c} and  

let  * ={ ,{a}, {c},{a,c },X}. 

Let f be a mapping of (R,  ) into (X, *) defined as follows: 

 

f (x) =       a     if x is rational 

                 b     if x is irrational 

 

 
Then f is a weakly-continuous open mapping which is not almost-continuous  

(at any rational point). 

 

Proof: 

 

Let x Q. 

Then f(x) = {a}  Q. 

Then f(x)   U where U is a neighbourhood of f(x) and it must contain {a, b}. 

Therefore, there exists a neighbourhood V of x such that f (V) = {a, b}. 

That is, f (V)   U ˉ. 

Therefore, f is weakly-continuous. 

Let x   Q. 

Then f(x) = {a}, {a} is an open set. 

Then        = {a, b} 

That is, {a}ˉ˚ = {a}. 

That is, x   U, U must contain Q and Qc. 

Therefore, f (U) = {a, b}   {a}ˉ˚ = {a}. 

Therefore, f is not almost-continuous. 

  

 

 

  

Definition:  
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 A mapping f : X → Y is said to be almost-quasi-compact [5] if it is onto and if A is open whenever f -1 (A) 

is regularly-open. 

 

Theorem: 

 

Suppose that f maps X onto Y and g maps Y onto Z. Then if f is almost-continuous and g f is open then g 
is almost-open. 

 

Proof:  

 

Suppose that f is almost-continuous and g f is open. 

Let S be any regularly-open subset of Y. 

Since f is almost-continuous, then f -1(S) is an open subset of X. 

Now, g f is open. 

Therefore, (g f) (f -1(S)) is also open. 

But (g f) (f -1(S)) = g(S). 

Therefore, g(S) is open. 

Therefore, g is almost-open.                                                                         

 

Theorem:  

 

Suppose that f maps X onto Y and g maps Y onto Z. Then if f is almost-continuous and if g f is closed then 

g is almost-closed. 

Proof. 

Suppose that f is almost-continuous g f is closed. 
Claim: g is almost-closed. 

Let S be any regularly-closed subset of Y. 

Since f is almost-continuous, f -1(S) is a closed subset of X. 

Now, g f is closed. 

Therefore, (g f) (f -1(S)) is also closed. 

But (g f) (f -1(S)) = g(S). 

Therefore, g(S) is closed. 

Therefore, g is almost-closed.                                                                     
 

Theorem: 

 

Suppose that f maps X onto Y and g maps Y onto Z. Then if f is almost-continuous and if g f is quasi-

compact then g is almost-quasi-compact. 

 

Proof: 

 

Suppose that f is almost-continuous and g f is quasi-compact. 
Let g -1(S) be a regularly-open subset of Y. 

Then, by almost-continuity of f, f -1(g -1(S)) is open  

But f -1(g -1(S)) = (g f) -1(S). 

Since g f is quasi-compact, S must be open. 

Therefore, g is almost-quasi-compact.                                                         

 

 

 

CONCLUSION 
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 In this Paper, we have proved that every continuous mappings is almost-continuous mappings but the 

converse need not be true. We have also proved that every weakly-continuous mappings is almost-continuous but 

the converse need not true.  
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